
Thomas Arts

Support software certification
by testing actual code

against security requirements

Observations

Application vulnerabilities one important cause of data breaches / attacks

2

Errors in your code that
are not found or found,

but not fixed

Observations

Application vulnerabilities one important cause of data breaches / attacks

When vulnerability is detected, a small test can show presence of this vulnerability

3

So… why did we not
write that little test in

the first place?

Why is testing hard?

features tests additional tests when

adding 1 feature

20 80 4

3 - 4 tests per
feature

O(n) test cases

4

Why is testing hard?

features tests additional tests when

adding 1 feature

20 80 + 190 4 + 20

pairs of features

O(n2) test cases

5

Why is testing hard?

features tests additional tests when

adding 1 feature

20 80 + 190 + 1140 4 + 20 + 190

triples of features

O(n3) test cases

6

Finding tricky faults in software is difficult

Don't write tests!

7

Generate them
from a specification

A specification describes how the software should behave

It is a linear description…
 adding a feature makes it only a bit longer

Use this to automatically generate and execute tests from

8

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool
for random testing of Haskell programs. SIGPLAN Not. 35, 9 (Sept.
2000), 268–279. https://doi.org/10.1145/357766.351266

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006. Testing
telecoms software with quviq QuickCheck. In Proceedings of the 2006 ACM
SIGPLAN workshop on Erlang (ERLANG '06). Association for Computing Machinery,
New York, NY, USA, 2–10. https://doi.org/10.1145/1159789.1159792

https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/1159789.1159792

Generation of test sequences

Test
generator

9

Generation of test sequences

Test
generator

sequence
 API calls

10

Generation of test sequences

Test
generator

sequence
 API calls

11

Generation of test sequences

Test
generator

sequence
 API calls

12

Generation of test sequences

Test
generator

sequence
 API calls

13

Generation of test sequences

Test
generator

sequence
 API calls

shrink

minimal
example

shrink both
sequence length

as well as
generated

arguments to API
calls

14

Scaled to industrial examples
More than 10 years of R&D to adapt to industrial needs

protocols, base stations, switches, first response systems, distributed
databases, video on demand servers, video conferencing, file
synchronization (e.g. dropbox), messaging, automotive software,
financial software, web services, railway applications, smart
contracts, factory automation, ….

15

Scaled to industrial examples
More than 10 years of R&D to adapt to industrial needs

16

Scaled to industrial examples

Sequences reveal faults

17

Scaled to industrial examples

18

T. Arts, J. Hughes, U. Norell and H. Svensson, "Testing AUTOSAR software with QuickCheck," 2015 IEEE
Eighth International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Graz,
Austria, 2015, pp. 1-4,

Generation of test sequences

Test
generator

sequence
 API calls

shrink

minimal
example

19

Generation of test sequences

Test
generator

sequence
 API calls

shrink

minimal
example

20

Generation of test sequences

Specification is stateful model for API

initial state
for each API
 precondition: possible in this state?
 generate arguments for the API call
 next state: update the model state given the call
 postcondition: is SUT result comptable with model state

specification
linear in

number of API
calls!

Important:
choose right level
of abstraction for

model

21

Specifications: a model of the software

22

model

Software

Visit random states the software can be in

23

observe whether
software respects this

model state

The Happy
Path

Negative testing for free!

24

illegal operation

fault injection by
"valid"
operations at the
wrong moment

Benjamin Vedder, Thomas Arts, Jonny Vinter, and Magnus Jonsson. 2013.
Combining Fault-Injection with Property-Based Testing. In Proceedings of
International Workshop on Engineering Simulations for Cyber-Physical
Systems (ES4CPS '14). Association for Computing Machinery, New York,
NY, USA, 1–8.

Threat model: subtle modifiers of actions

25

specify carefully

Security requires more…

26

Strategies for eventuality properties

Model language to express strategies:

 From any state we are in… this is how we get to the goal

This forces developers to describe they covered all the cases… and it can be
tested that so is the case

27

Software certification

- should specify model to cover functional behaviour
- covers both positive and negative test cases

- should specify threats using threat model
- should specify necessary eventuality properties

Model is inspected by certifiers, thousands of tests are automatically generated to
verify that the software respects the model. Coverage used to double check that
there is no bias in tests.

28

