
From Log4Shell to
Log4SBOM

Piotr Karwasz, Apache Software Foundation

Who are we?
Piotr Karwasz:

● 2000: OSS aficionado.
● 2009: Ph.D. in Mathematics (UHP, Nancy).
● Father of three daughters:

Mimi, Lili and Nati.
● 2017: I started my own IT company.
● 2022, January: start contributing to Log4j.
● 2022, July: Logging Services PMC member.
● 2024, March: ASF member.
● 2024, June: Logging Services PMC chair.

https://oss.copernik.eu/
https://linkedin.com/in/ppkarwasz/

Apache Software Foundation:

● American 501(c)(3) nonprofit:
(3)—Charitable organization

● More than 800 members
● More than 8000 contributors (committers)
● 200 Top-level projects
● Each TLP lead by a

Project Management Committee
● Apache Logging Services PMC,

since December 2003

https://apache.org/
https://logging.apache.org/

https://oss.copernik.eu/
https://www.linkedin.com/in/ppkarwasz/
https://apache.org/
https://logging.apache.org/

logger.debug(“Opening file {}!”, file);

logger.info(“Hello {}!”, user);

logger.error(“Failed to foo!”, e);

What is Log4j?

● One of the logging libraries of Apache

Logging Services, together with

Log4cxx, Log4Net, Log4j Kotlin, Log4j Scala.

● 2001: Ceki Gülcü creates Log4j 1

● 2003: Ceki Gülcü brings Log4j to ASF

● 2005-2011: Ceki Gülcü starts working on

SLF4J/Logback successor

● 2012: Last Log4j 1 release

● 2014: Log4j 2 API/Core is published by:

G. Gregory, R. Goers, R. Popma, M. Sicker

and others

● 2015: end-of-life of Log4j 1

Remember,
remember,
the 9th of December!
(2021)

Source: Devianart

https://www.deviantart.com/papaosmubal/art/Guy-Fawkes-protest-mask-983793563

CVE-2021-44228 (Log4Shell)
“An attacker who can control log messages or log

message parameters can execute arbitrary code

loaded from LDAP servers…”—NVD Database

Ingredients:

1. Log4j Core did expand placeholders like

${env:HOME} in configuration files, but

also in log messages.

2. JNDI is a Java technology to retrieve

configuration values, services or (Easter

egg)… download code.

3. Log4j Core supported ${jndi:…}

Characteristics:

● Affects a lot of people:

Log4j Core had already more than 10 M

downloads monthly.

● Easily exploitable:

For example Minecraft from Mojang AB

passed all chat messages in the game to Log4j

Core.

● Limited exploitability on up-to-date JDK

versions.

Timeline of 2.15.0 release
November 24th, 7:51 UTC:

Chen Zhaojun reports the vulnerability

November 24th, 17:30 UTC:
Team discusses the report. It is bad.

November 25th: Thanksgiving!

November 26th, 4:00 UTC:
CVE number requested.

November 30th:
Patch supplied (public PR).

December 5th:
Patch amended, reviewed and merged.

December 7th:

Release vote for 2.15.0 RC1 (72 hours)

December 9th:

Users notice the PR solves a security issue.

Problem with RC1, RC2 vote (7 hours)

Version 2.15.0 released with 7 votes.

Note: Release 2.15.0 was the first of 4 releases

that patched a total of 4 CVEs and ended on

December 28th with the 2.17.1 release.

Reactions
● Log4j questions on StackOverflow

increased tenfold to 2‰.

Do they use Log4j?

● There is a considerable increase in

upgrades from Log4j 1 (not affected, EOL

2015) to Log4j 2.

● Some companies upgraded Log4j Core

multiple times during December 2021.

● Others didn’t…

Source: Sonatype Log4j Updates and Vulnerabilities

https://www.sonatype.com/resources/log4j-vulnerability-resource-center

Apache Log4j Reactions

Lessons learned
Too many bundled features:

learn to say NO (intelligently).

Supply chain problems:

● Tests are flaky (slow down release),

● Site generation is slow,

● Release procedure is complex,

● Keep dependencies up-to-date

(and tell about it).

Documentation problems:

● Is hard to find,

● Is not complete, some obscure features are

not documented,

● Does not contain best practices.

Helped solving the problems:

● Tidelift supports Log4j since January 2023,

● German Sovereign Tech Fund with a grant to
Christian Grobmeier, Volkan Yazıcı and me,
since September 2023.

https://tidelift.com/
https://www.sovereigntechfund.de/tech/log4j

Handling features

Securing optional features
Handling features is hard:

● Features bring users,

● Features bring security exposure,

● OSS is a meritocracy:

Maintainers have the right to their

features in exchange for their work.

● Log4j created a 3.x branch in 2018 to

split each optional dependency, including

JNDI into its own artifact.

Completed: IX 2024

● Removal of seldom downloaded artifacts.

● Ramp-up program:

We accept new modules with a proven

user base and a maintainer. These

modules start as third-party.

Supply chain

Preparing a release
We need an expert Release Manager to:

● Select the changes for a new release,

● Run all the test suites,

● Build the website,

● Sign the release,

● Prepare the release notes,

● Handle the voting procedure,

● Release the new version.

Now, as one of the first ASF projects, we

(almost) fully automate:

● Running tests,

● Upgrading dependencies,

● Deploying snapshots,

● Staging the new website,

● Staging and signing the artifacts and

source archives,

● Staging the voting procedure.

Key supply chain elements
● Can we trust automation?

ASF policy requires the RM to create the binaries.

Reproducible Builds Project:

All our Java builds are reproducible!

● Dependabot: upgrades dependencies since 2017.

We accept those upgrades automatically if tests pass.

● GitHub Actions is the CI/CD engine we use.

● Lots of Maven plugins and test libraries

that don’t get credit enough!

https://reproducible-builds.org/
https://github.com/dependabot
https://docs.github.com/en/actions

Software Bill of Materials
An SBOM is:

● An inter-ecosystem format to list

dependencies.

● A useful tool to manage dependencies

and their versions.

● A worldwide network of

machine-readable and interconnected

security documents.

Present:

● Publishing of SBOM for all Log4j artifacts.

The dependency versions are not enforced,

but merely suggested.

● Maven specificity: dependents don’t profit

from all version suggestions.

● Usage of SBOM links to point to a

machine-readable VDR.

● Features contributed back to

CycloneDX Maven Plugin 2.8.0

https://github.com/CycloneDX/cyclonedx-maven-plugin

SBOMs future (?)
● Integration of SBOMs into

ecosystem-specific dependency

management systems.

Transparency Exchange API for:

● Automatically import VDR/VEX entries

from dependencies to stage VEX entries.

“Vulnerability Bot”

● Push our VDR, VEX and version

suggestions to consumers/dependents.

https://github.com/CycloneDX/transparency-exchange-api

Documentation

Security through education
Logging is not always safe:

● Unstructured logging:

CWE-93 CRLF Injection

● Presence of sensitive information in logs:

CWE-215: SI in Debug Code

● Injection of {} Log4j formatting patterns:

String user = “root {}”;
String what = “login”;
log.(user + “failed to {}”, what);

● Reliable and secure transport.

Solutions:

● Rewrite of documentation website.

Learn from the source, not ChatGPT.

● Generation of reference from code:

Living documentation,

Developers can not forget.

● Provide best practices and tips:

The maintainers knowledge base was

mainly unwritten.

Tip: there will be an in-depth book by Christian

Grobmeier published by Manning.

https://cwe.mitre.org/data/definitions/93.html
https://cwe.mitre.org/data/definitions/215.html
https://www.manning.com/

Status June 2024

Current status

Automatically generated Plugin Reference

Testing quality

Test quality requirements
All software component should have tests

that:

● Provide 73,9% of coverage,

● Are supplied with each PR,

● Test the required behaviour,

● Do not test implementation details,

● Do not have false negatives,

● Do not have false positives (flakiness).

September 2023:

● Sequential tests,
● 30-40% of test runs failed for no reason,
● Build times up to 60 minutes.

September 2024:

● Parallel tests,
● Dynamic tests (fuzzing),
● 8% of test runs fails (21% flaky),
● Build + deploy around 30 minutes.
● Searchable build failure database:

Gradle Develocity

https://gradle.com/develocity/

Q & A

https://logging.apache.org/

Thanks
Agnieszka Karwasz and my angels:

Milena, Liliana, Natalia

Apache Logging Services team:
C. Kozak, D. McColl, D. Psenner, G. Gregory,
J. Friedrich, M. Sicker, R. Goers, R. Gupta,
R. Popma, R. Middleton, R. Grabowski, S. Deboy,
S. Webb and Th. Schöning.
See also https://logging.apache.org

Partners in crime (STF project):
Christian Grobmeier and Volkan Yazıcı

Financial supporters:
Tidelift and Sovereign Tech Fund

Remember about:

Source: XKCD

https://logging.apache.org/team-list.html
https://logging.apache.org
https://tidelift.com/
https://www.sovereigntechfund.de/
https://xkcd.com/2347/

