Compiler Options
Hardening Guide

for C and C++

fi,ﬂ,f

Z & 0penSSF

LIPS N, EFIEesn ERICSSON - 5‘ OPEN SOURCE SECURITY FOUNDATION

Copyright © 2024 Ericsson® and The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks.
The Ericsson logotype is one of the registered trademar ks or trademarks of Telefonaktiebolaget LM Ellcs.s.on

The C and C++ Hardening Challenge

Systems
programming

Cand C++
consistently
preferred for

Embedded
systems

Performance-
critical
applications

C and C++
are also

memory
unsafe

Addressing vulnerabilities in C and C++ on a large
scale presents several significant challenges:

® Rewriting existing C and C++ code to memory-safe
languages unbearably expensive

® Unsafe dependencies will slow down migration to
memory-safe languages, such as Rust”

*) Recent data indicates that over 70% of Rust crates, have dependencies on C or C++

SECURITY FOUNDATION

https://doi.org/10.1007/978-3-031-17143-7_33

Recent Regulatory Attention

CISA joint publication with 10

national cybersecurity authorities CISA joint publication with US National Cvbersecurit
US Presidential Executive NSA Guidance on on Shifting the Balance of 8 national cybersecurity Y Ly
- - - . Strategy Implementation
Order on Improving the Software Memory- Cybersecurity Risk: authorities on Memory Plan
Nation’s Cybersecurity safety Issues Security-by-Design and -Default Safe Roadmaps —
®
May 2021 September November December April October December February May
2022 2022 2022 2023 2023 2023 2024 2024
. o
EU Cyber Resilience Act UK Telecommunications Updated CISA publication pjiica) aoreement on US White House ONCD
(Proposal) Security Code of Practice with 18 national EU Cyber Resilience Act report Back to the
cybersecurity authorities: building blocks

Principles and Approaches
for Secure by Design

Open3SF

OPEN 50U SECURITY FOUNDATION

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.gov.uk/government/publications/electronic-communications-security-measures-regulations-and-draft-telecommunications-security-code-of-practice
https://www.gov.uk/government/publications/electronic-communications-security-measures-regulations-and-draft-telecommunications-security-code-of-practice
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.cisa.gov/securebydesign
https://www.cisa.gov/securebydesign
https://www.cisa.gov/case-memory-safe-roadmaps
https://www.cisa.gov/case-memory-safe-roadmaps
https://www.european-cyber-resilience-act.com/
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/05/NCSIP-Version-2-FINAL-May-2024.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/05/NCSIP-Version-2-FINAL-May-2024.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/05/NCSIP-Version-2-FINAL-May-2024.pdf

Compiler Options Hardening for C and C++

Guide in configuring programming tools during development \

to reduce attack surface of produced software \
C.f. Product Hardening C and C++ Compilers Major Linux Consuming OSS
Provides guidance in Provide optional features distributions From source means you are
configuring a products that must be enabled to Already package software responsible for ensuring
operational parameters to add protection against with such protections that these protection
secure defaults to reduce various security flaws to enabled by default features are enabled when
attack surface of deployed compiled binaries, e.g., a_ 1Q building the software
software - applications and shared " T

libraries o aa —

DOPEN SOURCE SECURITY FOUNDATION

Challenges for deploying hardened compiler options

Possible deployment pitfalls

® Default enabled features depends on compiler,
compiler version and where it is sourced from

® 0SS projects that do not enable or support
protection options in their build system or code

® Protection features that require tradeoffs in
performance, memory, or increased binary size

® Protection features that are incompatible with
certain language constructs or patterns

“I...] 85.3% of desktop binaries adopt Stack Canaries,
but only 29.7% of embedded binaries do”

Building Embedded Systems Like It’s 1996

Ruotong Yul7
Mauro Contits

Stevens Institute of Technology
9Cyber Independent Testing Lab

Abstract—Embedded devices are ubiquitous. However, pre-
liminary evidence shows that attack mitigations protecting our
desktops/servers/phones are missing in embedded devices, posing
a significant threat to embedded security. To this end, this
paper presents an in-depth study on the adoption of common
attack mitigations on embedded devices. Precisely, it measures
the presence of standard mitigations against memory corruptions
in over 10k Linux-based firmware of deployed embedded devices.

Francesca Del Nint Yuchen Zhang?

HUniversity of Padua
TUniversity of Utah

Shan Huang! Pallavi Kaliyar! ~ Sarah Zaktod

Georgios Portokalidis! Jun Xul?

SNorwegian University of Science and Technology
*Delft University of Technology

our understanding, but they (somewhat and unintentionally)
leave behind an impression that the support-wise barriers are
the primary blame for the absence of attack mitigations and
techniques enabling mitigations without those supports (e.g.,
[71. [15]) can essentially solve the problem. But does this
reflect the reality in general?

Aiming to investigate the above doubt, we present a large-

Network and Distributed Systems Security (NDSS) Symposium 2022

Compiler options hardening is not a silver bullet, but necessary
in combination with memory-safe languages, secure coding
standards, and security testing

0 OpenSSF

5
p OPEN SOURCE SECURITY FOUNDATION

https://www.ndss-symposium.org/ndss-paper/auto-draft-211/

What is covered by the guide?

1 Recommended Compiler Options

Hardening options widely available in open-source .
compilers, currently GCC and Clang/LLVM

Includes both flags that will warn developers

about, as well as harden software

Most of these options are already enabled by the
major Linux distributions today

Compiler options that, when used inappropriately,
may result in potential defects with significant
security implications in produced binaries.

4 Separating debug data from release builds

Compiler-based tools designed to detect and .
pinpoint memory-safety issues and other defects

Valuable diagnostics for debugging and testing .

May be prohibitively expensive for release builds
due to performance penalties & memory overhead

Recommendation for managing debug information
that aids in binary analysis and reverse engineering

However, decompilers can work without debug
information, so security of a system must not
depend on omitting such information

Additional content (in incubation)

» Separate guide for using GCC and Clang attribute annotations
e Annotations provide additional metadata to compilers

* Enabling better code analysis, benefiting security and
performance

OpenSsF

OURCE

TL;DR;

-02 -Wall -Wformat -Wformat=2 -Wconversion -Wimplicit-fallthrough \
-Werror=format-security \

-U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=3 \

-D_GLIBCXX_ASSERTIONS \

-fstrict-flex-arrays=3 \

-fstack-clash-protection -fstack-protector-strong \

-W1l,-z,nodlopen -W1l,-z,noexecstack \

-Wl,-z,relro -Wl,-z,now \

-Wl,--as-needed -W1l,--no-copy-dt-needed-entries

+ conditional options

OpenSSF

DOPEN SOURCE SECURITY FOUNDATION

Conditional options

When Additional options flags
using GCC -Wtrampolines

using GCC and only left-to-right writing in
-Wbidi-chars=any
source code

for executables -fPIE -pie

for shared libraries -fPIC -shared

for x86_64 -fcf-protection=Ffull

for aarch64 -mbranch-protection=standard

. -fno-delete-null-pointer-checks -fno-strict-overflow -fno-strict-aliasing
for production code
-ftrivial-auto-var-init=zero

for treating obsolete C constructs as errors -Werror=implicit -Werror=incompatible-pointer-types -Werror=int-conversion

for multi-threaded C code using GNU C
library pthreads

-fexceptions

OpenSSF

;‘\\ DOPEN SOURCE SECURITY FOUNDATION

Example: -D_FORTIFY_SOURCE

3.10. Fortify sources for unsafe libc usage and buffer overflows

supported
Compiler Flag) Description
since
GCC12.00 Same checks as in -D_FORTIFY_SOURCE=2 , but with significantly more calls fortified with a
-D_FORTIFY_SOURCE=3 > : . . . ;
Clang 9.0.0° potential to impact performance in some rare cases. Requires -01 or higher.
GCC 4.0.0 In addition to checks covered by -D_FORTIFY_SOURCE=1 , also trap code that may be conforming to

-D_FORTIFY_SOURCE=2 - i
- - Clang 5.0.0° the C standard but still unsafe. Requires -01 or higher.

GCC4.00

Fortify sources with compile- and run-time checks for unsafe libc usage and buffer overflows
Clang 5.0.0

-D_FORTIFY_SOURCE=1

3.10.1. Synopsis

The _FORTIFY_SOURCE macro enables a set of extensions to the GNU C library (glibc) that enable checking at entry points of a number of functions
to immediately abort execution when it encounters unsafe behavior. A key feature of this checking is validation of objects passed to these function
calls to ensure that the call will not result in a buffer overflow. This relies on the compiler being able to compute the size of the protected object at

compile time. A full list of these functions is maintained in the GNU C Library manual“?:;

trncat, sprintf, vsprintf, snprintf, vsnprintf, gets

strncpy, s

memcpy, Mempcpy, Memmove, memset, strepy, s
The _FORTIFY_SOURCE mechanisms have three modes of operation:

-D_FORTIFY_SOURCE=1 : conservative, compile-time and runtime checks; will not change (defined) behavior of programs. Checking for
overflows is enabled when the compiler is able to estimate a compile time constant size for the protected object.

-D_FORTIFY_SOURCE=2 : stricter checks that also detect behavior that may be unsafe even though it conforms to the C standard; may affect
program behavior by disallowing certain programming constructs. An example of such checks is restricting of the %n format specifier to
read-only format strings.

-D_FORTIFY_SOURCE=3 : Same checks as those covered by -b_FORTIFY_SOURCE=2 except that checking is enabled even when the compiler is

able to estimate the size of the protected object as an expression, not just a compile time constant.

OpenSSF

5
"\\ OPEN SOURC URITY FOUNDATION

® Descriptive title

Option flags (with notable variants)
Compatible compilers and versions
High-level description

Synopsis; with explanation of the
objective of the feature and basic usage

Example: -D_FORTIFY_SOURCE (cont.)

Performance implications; what aspects Y ————
CO ntr'bute to performa nce Or memory Both _FORTIFY_SOURCE=1 and _FORTIFY_SOURCE=2 are expected to have a negligible run-time performance impact (~0.1%).
Overh ead . 3.10.3. When not to use?

_FORTIFY_SOURCE is recommended for all application that depend on glibc and should be widely deployed. Most packages in all major Linux
distributions enable at least _FORTIFY_SOURCE=2 and some even enable _FORTIFY_SOURCE=3 . There are a couple of situations when

_FORTIFY_SOURCE may break existing applications:

Contraindicators; conditions which may
. . . « If the fortified glibc function calls show up as hotspots in your application performance profile, there is a chance that _FORTIFY_SOURCE may
SuU gg est Gg al nst |eVe rda g | ng pG rtlcu |0 r fedtu re . have a negative performance impact. This is not a common or widespread slowdown““ but worth keeping in mind if slowdowns are observed

due to this option.
« Applications that use the GNU extension for flexible array members in structs“> may confuse the compiler into thinking that an object is
smaller than it actually is, resulting in spurious aborts. The safe resolution for this is to port these uses to C99 flexible arrays but if that is not
k possible (e.g., due to the need to support a compiler that does not support C99 flexible arrays), one may need to downgrade or disable)

_FORTIFY_SOURCE protections.

3.10.4. Additional Considerations

Internally -p_FORTIFY_Source relies on the built-in functions for object size checking in GCC*® and Clang®/, namely __builtin_object_size and
__builtin_dynamic_object_size . These builtins provide conservative approximations of the object size and are sensitive to compiler
optimizations. With optimization enabled they produce more accurate estimates, especially when a call to __builtin_object_size isina

Add itiona I considerqtions; i n—d epth i nform Gtion different function from where its argument pointer is formed. In addition, GCC allows more information about subobject bounds to be determined
. . o1 efe. e with higher optimization levels. Hence we recommending enabling -D_FORTIFY_SOURCE=3 with at least optimization level -02 .
of internals, common pitfalls, possibilities for _)) _
Applications that incorrectly use malloc_usable_size ““ to use the additional size reported by the function may abort at runtime. This is a bug in
Gd d itiono | tu n i ngl etc. the application because the additional size reported by malloc_usable_size is not generally safe to dereference and is for diagnostic uses only.
The correct fix for such issues is to avoid using malloc_usable_size as the glibc manual specifically states that it is for diagnostic purposes only

“8, 0n many Linux systems these incorrect uses can be detected by running readelf -Ws <path> on the ELF binaries and searching for
malloc_usable_size@GLIBC “. If avoiding malloc_usable_size is not possible, one may call realloc to resize the block to its usable size and to

benefit from _FORTIFY_SOURCE=3 .

OpenSSF

"\\ OPEN SOURCE RITY FOUNDATION

Roadmap and how to contribute
e New features, new compilers
e Contributions that improve readability, presentation and accessibility also welcome

e Development happens in the Best Practices WG community on GitHub and on
OpenSSF Slack.

e The Compiler Hardening sub-initiative has regular Zoom calls, see Public Calendar

https://github.com/ossf/wg-best-practices-os-developers
https://join.slack.com/t/openssf/shared_invite/zt-22dfsrz1x-VirRpydvBZCXuTaGSTPWFA
https://calendar.google.com/calendar/u/0?cid=czYzdm9lZmhwNWk5cGZsdGI1cTY3bmdwZXNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ

Compiler Options
Hardening Guide

for Cand C++

https://best.openssf.org/Compiler-Hardening-Guides/
Compiler-Options-Hardening-Guide-for-C-and-C++

https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++

Ways to

Participate

»
e
<y UpendSF
E SECURITY FOUNDATION

00000C

Join a Working Group/Project

Come to a Meeting (see Public Calendar)

Collaborate on Slack
Contribute on GitHub

Become an Organizational Member

Keep up to date by subscribing to the
OpenSSF Mailing List

14

https://openssf.org/community/openssf-working-groups/
https://calendar.google.com/calendar/u/0?cid=czYzdm9lZmhwNWk5cGZsdGI1cTY3bmdwZXNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ
https://slack.openssf.org/
https://github.com/ossf
https://openssf.org/join/
https://openssf.org/sign-up/

Legal Notice

Copyright © Open Source Security Foundation®, The Linux Foundation®, & their contributors. The Linux Foundation has
registered trademarks and uses trademarks. All other trademarks are those of their respective owners.

Per the OpenSSF Charter, this presentation is released under the Creative Commons Attribution 4.0 International License
(CC-BY-4.0), available at <https://creativecommons.org/licenses/by/4.0/>. You are free to:

e Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
e Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made .
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

e No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

OpenSSF

SECURITY FOUNDATION

https://openssf.org/
https://www.linuxfoundation.org/
https://openssf.org/about/charter/
https://creativecommons.org/licenses/by/4.0/

	Slide 1: Compiler Options Hardening Guide
	Slide 2: The C and C++ Hardening Challenge
	Slide 3: Recent Regulatory Attention
	Slide 4: Compiler Options Hardening for C and C++
	Slide 5: Challenges for deploying hardened compiler options
	Slide 6: What is covered by the guide?
	Slide 7: Additional content (in incubation)
	Slide 8: TL;DR;
	Slide 9: Conditional options
	Slide 10: Example: -D_FORTIFY_SOURCE
	Slide 11: Example: -D_FORTIFY_SOURCE (cont.)
	Slide 12: Roadmap and how to contribute
	Slide 13: Compiler Options Hardening Guide for C and C++
	Slide 14: Ways to Participate
	Slide 15: Legal Notice

