
Compiler Options
Hardening Guide

for C and C++

Copyright © 2024 Ericsson® and The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses trademarks.
The Ericsson logotype is one of the registered trademarks or trademarks of Telefonaktiebolaget LM Ericsson.

Thomas Nyman, Ericsson

The C and C++ Hardening Challenge

Addressing vulnerabilities in C and C++ on a large

scale presents several significant challenges:

● Rewriting existing C and C++ code to memory-safe

languages unbearably expensive

● Unsafe dependencies will slow down migration to

memory-safe languages, such as Rust*

2

C and C++
consistently
preferred for

Embedded
systems

Systems
programming

Performance-
critical

applications

C and C++
are also
memory
unsafe

*) Recent data indicates that over 70% of Rust crates, have dependencies on C or C++

https://doi.org/10.1007/978-3-031-17143-7_33

Recent Regulatory Attention

3

September
2022

EU Cyber Resilience Act
(Proposal)

November
2022

NSA Guidance on
Software Memory-

safety Issues

December
2022

UK Telecommunications
Security Code of Practice

April
2023

CISA joint publication with 10
national cybersecurity authorities

on Shifting the Balance of
Cybersecurity Risk:

Security-by-Design and -Default

May 2021

US Presidential Executive
Order on Improving the
Nation’s Cybersecurity

October
2023

Updated CISA publication
with 18 national

cybersecurity authorities:
Principles and Approaches

for Secure by Design

December
2023

CISA joint publication with
8 national cybersecurity
authorities on Memory

Safe Roadmaps

Political agreement on
EU Cyber Resilience Act

US White House ONCD
report Back to the

building blocks

February
2024

May
2024

US National Cybersecurity
Strategy Implementation

Plan

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.gov.uk/government/publications/electronic-communications-security-measures-regulations-and-draft-telecommunications-security-code-of-practice
https://www.gov.uk/government/publications/electronic-communications-security-measures-regulations-and-draft-telecommunications-security-code-of-practice
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.cisa.gov/securebydesign
https://www.cisa.gov/securebydesign
https://www.cisa.gov/case-memory-safe-roadmaps
https://www.cisa.gov/case-memory-safe-roadmaps
https://www.european-cyber-resilience-act.com/
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/05/NCSIP-Version-2-FINAL-May-2024.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/05/NCSIP-Version-2-FINAL-May-2024.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/05/NCSIP-Version-2-FINAL-May-2024.pdf

Compiler Options Hardening for C and C++

4

Major Linux
distributions

Already package software
with such protections
enabled by default

C.f. Product Hardening

Provides guidance in
configuring a products
operational parameters to
secure defaults to reduce
attack surface of deployed
software

Consuming OSS

From source means you are
responsible for ensuring
that these protection
features are enabled when
building the software

C and C++ Compilers

Provide optional features
that must be enabled to
add protection against
various security flaws to
compiled binaries, e.g.,
applications and shared
libraries

Guide in configuring programming tools during development
to reduce attack surface of produced software

Challenges for deploying hardened compiler options

5

Possible deployment pitfalls

● Default enabled features depends on compiler,
compiler version and where it is sourced from

● OSS projects that do not enable or support
protection options in their build system or code

● Protection features that require tradeoffs in
performance, memory, or increased binary size

● Protection features that are incompatible with
certain language constructs or patterns

Compiler options hardening is not a silver bullet, but necessary

in combination with memory-safe languages, secure coding

standards, and security testing

Network and Distributed Systems Security (NDSS) Symposium 2022

“[…] 85.3% of desktop binaries adopt Stack Canaries,
but only 29.7% of embedded binaries do”

https://www.ndss-symposium.org/ndss-paper/auto-draft-211/

What is covered by the guide?

6

1
• Hardening options widely available in open-source

compilers, currently GCC and Clang/LLVM

• Includes both flags that will warn developers
about, as well as harden software

• Most of these options are already enabled by the
major Linux distributions today

Recommended Compiler Options 2
• Compiler options that, when used inappropriately,

may result in potential defects with significant
security implications in produced binaries.

Discouraged Compiler Options

3
• Compiler-based tools designed to detect and

pinpoint memory-safety issues and other defects

• Valuable diagnostics for debugging and testing

• May be prohibitively expensive for release builds
due to performance penalties & memory overhead

Sanitizers 4
• Recommendation for managing debug information

that aids in binary analysis and reverse engineering

• However, decompilers can work without debug
information, so security of a system must not
depend on omitting such information

Separating debug data from release builds

Additional content (in incubation)

7

5
• Separate guide for using GCC and Clang attribute annotations

• Annotations provide additional metadata to compilers

• Enabling better code analysis, benefiting security and
performance

Compiler attribute annotations

TL;DR;

+ conditional options

8

Conditional options

9

Example: -D_FORTIFY_SOURCE

10

Descriptive title

Option flags (with notable variants)
Compatible compilers and versions
High-level description

Synopsis; with explanation of the
objective of the feature and basic usage

Example: -D_FORTIFY_SOURCE (cont.)

11

Performance implications; what aspects
contribute to performance or memory

overhead.

Contraindicators; conditions which may
suggest against leveraging particular feature

Additional considerations; in-depth information
of internals, common pitfalls, possibilities for

additional tuning, etc.

Roadmap and how to contribute

● New features, new compilers

● Contributions that improve readability, presentation and accessibility also welcome

● Development happens in the Best Practices WG community on GitHub and on

OpenSSF Slack.

● The Compiler Hardening sub-initiative has regular Zoom calls, see Public Calendar

12

https://github.com/ossf/wg-best-practices-os-developers
https://join.slack.com/t/openssf/shared_invite/zt-22dfsrz1x-VirRpydvBZCXuTaGSTPWFA
https://calendar.google.com/calendar/u/0?cid=czYzdm9lZmhwNWk5cGZsdGI1cTY3bmdwZXNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ

Compiler Options
Hardening Guide

for C and C++

13
13

https://best.openssf.org/Compiler-Hardening-Guides/
Compiler-Options-Hardening-Guide-for-C-and-C++

https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++

Ways to
Participate

Join a Working Group/Project

Come to a Meeting (see Public Calendar)

Collaborate on Slack

Contribute on GitHub

Become an Organizational Member

Keep up to date by subscribing to the
OpenSSF Mailing List

14

https://openssf.org/community/openssf-working-groups/
https://calendar.google.com/calendar/u/0?cid=czYzdm9lZmhwNWk5cGZsdGI1cTY3bmdwZXNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ
https://slack.openssf.org/
https://github.com/ossf
https://openssf.org/join/
https://openssf.org/sign-up/

Legal Notice

Copyright © Open Source Security Foundation®, The Linux Foundation®, & their contributors. The Linux Foundation has
registered trademarks and uses trademarks. All other trademarks are those of their respective owners.

Per the OpenSSF Charter, this presentation is released under the Creative Commons Attribution 4.0 International License
(CC-BY-4.0), available at <https://creativecommons.org/licenses/by/4.0/>. You are free to:

● Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms:

● Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made .
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

● No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

15

https://openssf.org/
https://www.linuxfoundation.org/
https://openssf.org/about/charter/
https://creativecommons.org/licenses/by/4.0/

	Slide 1: Compiler Options Hardening Guide
	Slide 2: The C and C++ Hardening Challenge
	Slide 3: Recent Regulatory Attention
	Slide 4: Compiler Options Hardening for C and C++
	Slide 5: Challenges for deploying hardened compiler options
	Slide 6: What is covered by the guide?
	Slide 7: Additional content (in incubation)
	Slide 8: TL;DR;
	Slide 9: Conditional options
	Slide 10: Example: -D_FORTIFY_SOURCE
	Slide 11: Example: -D_FORTIFY_SOURCE (cont.)
	Slide 12: Roadmap and how to contribute
	Slide 13: Compiler Options Hardening Guide for C and C++
	Slide 14: Ways to Participate
	Slide 15: Legal Notice

